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Abstract

Steady mixed convection flow in a vented enclosure with an isothermal vertical wall and filled with a fluid-saturated porous medium is
investigated numerically. The forced flow conditions are imposed by providing an inlet at the bottom surface, and a vent at the top, fac-
ing the inlet. The nature and the basic characteristics of the mixed aiding as well as mixed opposing flows that arise are investigated using
the Darcy law model. The governing parameters are the Rayleigh number, Péclet number, and the width of the inlet as a fraction of the
height of the square enclosure. These parameters are varied over wide ranges and their effect on the heat transfer characteristics is studied
in detail.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Convective heat transfer in saturated porous media has
received considerable attention during the past several dec-
ades because of its wide range of applications. These appli-
cations include packed bed reactors, porous insulation,
beds of fossil fuels, nuclear waste disposal, usage of porous
conical bearings in lubrication technology, fibrous insula-
tion systems, grain storage, food processing, energy effi-
cient drying processes, geophysics, and energy related
engineering problems. The fundamental nature and the
growing volume of works in this area are amply docu-
mented in the books by Nield and Bejan [1], Ingham and
Pop [2–4], Vafai [5,6], Pop and Ingham [7], Bejan and
Kraus [8], Ingham et al. [9] and Bejan et al. [10], and the
review articles by Hadim and Vafai [11], and Vafai and
Hadim [12]. Convective flow inside a square and/or rectan-
gular cavity filled with a fluid-saturated porous medium
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has been studied extensively in the past due to its
applications in many engineering and geophysical systems,
including nuclear and electronic equipment cooling, post-
accidental heat removal in nuclear reactors, solar power
collectors, cooling of radioactive waste containers, to name
just a few (see [13]). A rich variety of important analytical,
numerical, and experimental results have been published
on this topic and they are important to better understand
the thermal convection inside porous cavities. The techni-
cal issues of mixed convection flow in porous media have
been concerned mainly with situations in which buoyancy
effects are substantial, if not entirely dominant. This leads
to an immediate identification of the flow regimes of
interest.

Attention will be focused in this paper on a new problem
of steady mixed convection inside a square vented cavity
filled with a fluid-saturated porous medium, with one of
the vertical wall being at constant temperature and the
remaining walls being perfectly insulated (adiabatic). By
providing an inlet and an exit vent, forced convection con-
ditions can be imposed inside the porous enclosure. The
imposed forced flow may aid the natural convection flow
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Nomenclature

D width of the inlet, and the vent, m
g gravitational acceleration, m s�2

H cavity height, m
K permeability of the porous medium, m2

Nu local Nusselt number
Nuav average Nusselt number
Pe Péclet number
Ra Rayleigh number for the porous medium
t time, s
T temperature, �C
T0 temperature of the throughflow at the inlet, �C
Tw temperature of the isothermal vertical surface,

�C
~v velocity vector, m s�1

u,v velocity components along x- and y-axes,
respectively, m s�1

U,V dimensionless velocity components along x- and
y-axes, respectively

V0 absolute value of the velocity of the forced flow
at the inlet, ms�1

x,y Cartesian coordinates, m
X,Y dimensionless Cartesian coordinates

Greek symbols

am effective thermal diffusivity, m2 s�1

b coefficient of thermal expansion, K�1

h dimensionless temperature
r ratio of composite material heat capacity to con-

vective fluid heat capacity
s dimensionless time
t kinematic viscosity, m2 s�1

w dimensionless stream function
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(aiding mixed convection flow), or oppose it (opposing
mixed convection flow), depending on the direction of the
forced flow. Conversely, the buoyancy may aid or oppose
the forced flow, depending on whether the surface temper-
ature is higher or lower than the temperature of the incom-
ing forced fluid flow. Also this type of geometry is
frequently encountered in micro-electronic devices. Two
examples are presented in Fig. 1a (a vented enclosure
packed with micro-pinfin) and Fig. 1b (a vented enclosure
packed with micro-sphere), respectively. It is worth men-
tioning to this end that for a viscous and incompressible
fluid (non-porous medium) the analogous problem has
been recently studied by Angirasa [14]. Angirasa [14] dealt
with the similar vented enclosure without porous media.
Other works on mixed convection in porous media are also
available [15–23].

2. Basic equations

Consider a square enclosure filled with a fluid-saturated
porous medium with the left vertical wall at the constant
temperature, Tw, and the other walls adiabatic. Mixed con-
vection conditions arise due to the provision of a forced
flow through a slot at the bottom edge of the vertical sur-
face, and a vent at the top edge for outflow, as shown in
Fig. 1c. It is assumed that D is the width of the inlet and
the vent. Buoyancy effects are induced due to the difference
in temperature between the left vertical wall, Tw, and the
throughstream temperature, T0, which has a constant
velocity, V0, at the inlet of the enclosure. The inlet forced
flow is fixed at the bottom and the temperature difference
(Tw � T0) is considered to be either positive (aiding flow)
or negative (opposing flow), respectively. In the porous
media, the following assumptions are made: the fluid and
the porous medium are in local thermal equilibrium; the
properties of the fluid and the porous media are constant;
the viscous drag and inertia terms of the momentum equa-
tions are negligible, and the Darcy and Boussinesq approx-
imations are valid.

Under these assumptions, the conservation equation for
mass becomes

ou
ox
þ ov

oy
¼ 0. ð1Þ

Using the assumptions, the momentum flow inside the
enclosure can be modelled by the Darcy flow model [1]
which constructs a relationship between the flow velocity
at a certain direction to the pressure gradient in that direc-
tion; that is,

v ¼ K
l
ð�rp þ qgÞ; ð2Þ

in vector form where, v, K, l, p, and g are the velocity vec-
tor, permeability, viscosity, pressure, and gravity vector,
respectively. The permeability K is an empirical constant
which may define a length scale squared of pores. The
Darcy flow model is valid in circumstances where the order
of magnitude of the local pore Reynolds number, based on
the local volume averaged speed (jvj1/2) and K1/2, is smaller
than 1. Darcy’s law also neglects the effects of a solid
boundary or the inertial forces on fluid flow. These effects
are expected to become more significant near the boundary
and in high-porosity media, thus causing the application of
Darcy’s law invalid. Taking the ‘curl’ on the both sides
of Eq. (2) using the assumptions, v = ui + vj + 0k and
g = 0i + gyj + 0k, results in the following momentum
equation:

ou
oy
� ov

ox
¼ � gbK

m
oT
ox
; ð3Þ



Fig. 1. (a) An enclosure packed with micro-pinfin, (b) an enclosure packed with micro-sphere, and (c) physical model and the coordinate system.
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where g = gy. Eq. (3) has no pressure term. Finally, the en-
ergy equation, according to Nield and Bejan [1], is

r
oT
ot
þ u

oT
ox
þ v

oT
oy
¼ am

o2T
ox2
þ o2T

oy2

� �
; ð4Þ

where x, y are the Cartesian coordinates measured in the
horizontal and vertical directions, u, v are the velocity com-
ponents along x- and y-axes, and T is the fluid temperature,
respectively. The physical meaning of the other quantities
are mentioned in Nomenclature.

We introduce the following non-dimensional variables:

X ¼ x
H
; Y ¼ y

H
; s ¼ V 0t

rH
; U ¼ u

V 0

;

U ¼ v
V 0

; h ¼ T � T 0

T w � T 0

ð5Þ

and define the dimensionless stream function, w, in the
usual way as

U ¼ ow
oY

; V ¼ � ow
oX

. ð6Þ
Substituting Eqs. (5) and (6) into Eqs. (3) and (4), the
following non-dimensional equations are obtained:

o2w

oX 2
þ o2w

oY 2
¼ �Ra

Pe
oh
oX

ð7Þ

and

oh
os
þ ow

oY
oh
oX
� ow

oX
oh
oY
¼ 1

Pe
o2h

oX 2
þ o2h

oY 2

� �
; ð8Þ

where Ra and Pe are the Rayleigh and Péclet numbers for a
porous medium which are defined by

Ra ¼ gKbðT w � T 0ÞH
amt

; Pe ¼ V 0H
am

. ð9Þ

It is worth mentioning that the Rayleigh number may be
either positive, Tw > T0 (aiding flow) or negative, Tw < T0

(opposing flow), respectively.
The numerical simulation is carried out in the time

domain but the final steady-state flow and heat transfer
characteristics will be presented only in the subsequent sec-
tions. The boundary conditions of Eqs. (7) and (8) are
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Left isothermal wall:

w ¼ 0; h ¼ 1 on X ¼ 0; 0 6 Y 6 1; ð10aÞ
Inlet:

w ¼ �X ; h ¼ 0 on Y ¼ 0; 0 6 X 6 D=H ; ð10bÞ
Bottom adiabatic wall:

w ¼ �D=H ; oh=oY ¼ 0 on Y ¼ 0; D=H < X 6 1;

ð10cÞ
Right adiabatic wall:

w ¼ �D=H ; oh=oX ¼ 0 on X ¼ 1; 0 6 Y 6 1; ð10dÞ
Top adiabatic wall:

w ¼ �D=H ; oh=oY ¼ 0 on Y ¼ 1; D=H < X 6 1;

ð10eÞ
Outlet:

ow=oY ¼ 0; oh=oY ¼ 0 on Y ¼ 1; 0 6 X 6 D=H .

ð10fÞ

It should be noticed that the vertical velocity component, V,
is numerically equal to unity at the inlet. Hence the stream-
function value at the inlet can be obtained by integrating V

from Eq. (6) with respect to X between the limits 0 and
D/H. This gives the boundary condition (10b) for w.
The three adiabatic surfaces of the cavity are connected to-
gether, and hence they all have the same constant value of
w = �D/H. For the inlet flow, the temperature is known
and it is set numerically equal to zero. The assumptions of
outlet boundary condition is not easy. Convection is as-
sumed to be dominant in the outflow through the vent.
The conduction through the outlet will then be almost negli-
gible. Hence the temperature gradient (oT/oy) is assumed to
be zero at the outlet. Several authors used such a boundary
condition for the energy equation at the outlet boundary;
for example, Prasad et al. [24] for porous media and Angi-
rasa [14] for non-porous media. It is seen that Eqs. (7) and
(8) subject to the boundary conditions (10) involve three
parameters, namely, Ra, Pe, and D/H. The relative magni-
tude of the Rayleigh and Péclet numbers determine which
of the two mechanisms of forced or free convection flow is
predominant.

The physical quantities of interest in this problem are
the local Nusselt number along the hot wall, which is
defined by

NuL ¼ �
oh
oX

� �
X¼0

ð11Þ

and also the average Nusselt number along the hot wall de-
fined as

Nuav ¼
Z 1

0

Nu dY . ð12Þ
Fig. 2. (a) The definition of the control volume, (b) integration point defi-
nition for a 2-D quadrilateral element, and (c) four noded flux element.
3. Numerical method

We developed a computer code (NATURE, written in
FORTRAN 77) in order to solve the governing equations.
NATURE is a finite volume code, but is based on a finite
element approach of representing the geometry. The finite
volume method proceeds by integrating Eqs. (7) and (8)
over a fixed control volume, which, using Gauss’s theorem,
result inZ

s

ow
oX

dnx þ
Z

s

ow
oY

dny ¼
Z

t

Ra
Pe

oh
oX

dt; ð13Þ
Z

t

oh
os

dtþ
Z

s
uhdnx þ

Z
s

vhdny

¼
Z

s

oh
oX

dnx þ
Z

s

oh
oY

dny ; ð14Þ

where ‘‘t’’ and ‘‘s’’ denote volume and surface integrals,
respectively, and dnx and dny are the differential Cartesian
components of the outward normal surface vector. The



Table 1b
Average Nusselt number for D/H = 0.3 and Pe = 10 for the aiding flow
situation at different grid sizes (N) and Rayleigh numbers (Ra)

Ra Average Nusselt number (Nuav)

N = 5000 N = 10,000 N = 20,000 N = 40,000 N = 80,000

10 2.851 2.446 2.384 2.380 2.380
100 2.562 2.311 2.238 2.236 2.236
250 2.365 2.015 1.922 1.917 1.917
500 2.015 1.720 1.652 1.624 1.624
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surface integrals are integrations of the fluxes of the con-
served quantities, whereas the volume integrals represent
source terms. What defines the control volume is an impor-
tant distinguishing feature of finite volume implementa-
tions. The computational domain is discretized into
elements. Then control volume surfaces are defined by ele-
ment mid-planes. This approach has been used by other
researchers, for example, Schneider and Raw [25,26]. The
procedure creates a control volume for each node, with
the boundary of each interior control volume defined by
eight line-segments in 2-D. This arrangement is shown in
Fig. 2a. The integral equations, Eqs. (13) and (14), are ap-
plied to each discrete control volume created by this tech-
nique. The continuous volume integrations are relatively
easy to convert to a discrete form, as will be shown later.
The continuous surface integrations are more involved
and are converted to a discrete form by evaluating them at
integration points (ip). The location of the integration points
for one flux element is shown in Fig. 2b for a 2-D quadrilat-
eral element. The surface fluxes must be discretely repre-
sented at the integration points to complete the conversion
of the continuous equations to their discrete counterparts.
The discrete form of the integral equations are written as

X
ip

ow
oX

Dnx

� �
ip

þ
X

ip

ow
oY

Dny

� �
ip

� Ra
Pe

oh
oX

Vol ¼ 0 ð15Þ

and

Vol
h� h0

Ds

� �
þ
X

ip

ðuDnxÞ0iphip þ
X

ip

ðvDnyÞ0iphip

�
X

ip

oh
oX

Dnx

� �
ip

�
X

ip

oh
oY

Dny

� �
ip

¼ 0; ð16Þ

where ‘‘Vol’’ is the volume of the control volume, the sub-
script ‘‘ip’’ denotes an integration point, the summation is
over all the integration points of the surface, Dnx and Dny

are the discrete outward surface vectors, Dt is the time step,
the superscript ‘‘0’’ means ‘‘at the old time level’’, and the
overbar on the source terms indicate an average value for
the control volume.

The time step term,

Vol
h� h0

Ds

� �
ð17Þ
Table 1a
Comparison of the average Nusselt number for a closed cavity with some
previous numerical results

Authors Nuav

Ra = 10 Ra = 100 Ra = 1000

Mahmud and Fraser [30] 1.079 3.14 13.82
Walker and Homsy [31] – 3.10 12.96
Gross et al. [32] – 3.14 13.45
Moya et al. [33] 1.065 2.80 –
Manole and Lage [34] – 3.12 13.64
Baytas and Pop [35] 1.079 3.16 14.06
Saeid and Pop [36] – 3.002 13.726
Present prediction 1.079 3.14 13.82

Fig. 3. (a) Schematic of velocity profiles at aiding flow situation and
(b) schematic of velocity profiles at opposing flow situation.
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is a first-order accurate backward Euler approximation to
the transient term. It is also sometimes called the ‘‘lumped
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Fig. 4. Streamline for (a) aiding flow: D/H = 0.25, Pe = 1, Ra = 1; (b) aiding fl
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Ra = 50.
mass’’ approximation. It is robust, is fully implicit so it
creates no time step limitation and is easy to implement.
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However, this does mean that transient calculations are
only first-order accurate in time. As it should, this term
has no bearing on the steady-state solution.

Following the standard finite element approach, shape
functions are used to evaluate the derivatives for all the dif-
fusion terms. For instance, for a derivative in the ‘‘x’’ direc-
tion at integration point ‘‘ip’’,

oU
oX

����
ip

¼
X

n

oNn

oX

����
ip

Un; ð18Þ

where the summation is over all the shape functions for the
element. In Eq. (18), U represents any variable, for exam-
ple, H, w, etc. The Cartesian derivatives of the shape func-
tions can be expressed in terms of their local derivatives via
the Jacobian transformation matrix,

oN
oX
oN
oY

0
BB@

1
CCA ¼

oX
os

oY
os

oX
ot

oY
ot

0
BB@

1
CCA
�1

oN
os
oN
ot

0
BB@

1
CCA. ð19Þ
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Fig. 5. Streamlines (left) and isotherms (right) for Pe = 0.1, Ra =
For the (i, j) flux element (see Fig. 2c) the domain of the ele-
ment can be defined in terms of the local, non-orthogonal
coordinates s and t by

X ðs; tÞ ¼ N 1X i;j þ N 2X iþ1;j þ N 3X i;jþ1 þ N 4X iþ1;jþ1;

Y ðs; tÞ ¼ N 1Y i;j þ N 2Y iþ1;j þ N 3Y i;jþ1 þ N 4Y iþ1;jþ1;
ð20Þ

where the shape functions N are given by

N 1 ¼
1

4
ð1� sÞð1� tÞ; N 2 ¼

1

4
ð1þ sÞð1� tÞ;

N 3 ¼
1

4
ð1� sÞð1þ tÞ; N 4 ¼

1

4
ð1þ sÞð1þ tÞ. ð21Þ

In order to discretize the advection terms, a modified cen-
tral differencing scheme is used. This method uses upwind
differencing scheme (UDS) with a correction as shown in
the following equation:

Uip ¼ Uup þ ðDUipÞ0 with DUip �
DX
2

oU
oX

� �
ip

; ð22Þ
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which shows the approximation of Uip for the x-direction
only. The approximation of the source term is shown in
Das et al. [27] and is not repeated here. After summing
up all cell face fluxes and sources, the discretized transport
equation reduces to the following algebraic equation:

APUP þ
X

nb

AnbUnb ¼ QU; ð23Þ

where the coefficient Anb, contains the convective and diffu-
sive flux contribution and QU represents the source term.
The system of equations is solved by using TDMA (tri-diag-
onal matrix algorithm) solver [28]. The whole computational
domain is subdivided on an unequally spaced control vol-
umes. The time increment (Ds) was 10�4 in most of the cases;
but sometimes, especially at high jRaj smaller values were
chosen in order to confirm the accuracy of the results.
4. Accuracy and validation

The current numerical technique was very successfully
used in a series of recent papers; for example, Mahmud
-0
.2

9

-0.29

-0
.2

7

-0.27

-0
.2

7

-0
.2

5

-0.25

-0
.2

5

-0
.2

5

-0.25

-0
.2

4

-0
.2

4

-0.24

-0.24

-0
.2

2

-0.22

-0.22

-0
.2

0

-0
.2

0

-0
. 1

8

-0
.1

8
-0

.1
6

-0.16

-0
.1

5

-0.15

-0
.1

3

-0.13

-0
.1

1
- 0

.1
1

-0
.0

9

-0.09

-0.0 7

-0
.0

5
-0

.0
5

-0
.0

4

0 04

-0
.0

2

0
0

(a)

-0.21

-0.21

-0
.2

1

-0.21
-0.18

-0
.1

8

-0.18

-0.14

-0.14

-0.14

-0.14
-0.11

-0
.1

1

-0.11

-0.07

-0
.0

7

-0.07

-0.04

-0.04

-0.04

-0.04

-0.00

-0.00

-0.00

0.03

0 .
0 3

0.03

0.03

0.03

0.
07

0.
07

0.07

0.07

0.10

0.
1 0

0.10

0.10

0.10

0.
14

0.14

0.14

0.14

0.
17

0.17

0.
17

0.17

0.21

0.21

0.21

0.
2 1

0.25

0.25

0.25

0.28

0.28

0.320.32

(b)

Fig. 6. Streamlines (left) and isotherms (right) for Pe = 10, Ra =
et al. [29], and Mahmud and Fraser [30]. The values of
the average Nusselt number, given by Eq. (12), along the
left vertical wall of a classical porous square cavity (a por-
ous cavity with two differentially heated vertical isothermal
walls and two adiabatic horizontal walls and the porous
media obeying the Darcy’s law) for several values of the
Rayleigh number are compared with those reported by
Mahmud and Fraser [30], Walker and Homsy [31], Gross
et al. [32], Moya et al. [33], Manole and Lage [34], Baytas
and Pop [35], and Saeid and Pop [36]. It is seen that the
present results are in very good agreement with those
reported by these authors (see Table 1a). Therefore, these
comparisons support very well the validity of the present
computations. Table 1b shows the variation of average
Nusselt number as a function of grid sizes (N) and Rayleigh
numbers (Ra) for D/H = 0.3 and Pe = 10. Results of Nuav

are reported up to three decimal places. It is observed in
Table 1b that the values of Nuav for all the selected cases
are for same N = 40,000 and N = 80,000. For better accu-
racy, N = 80,000 is selected to present the results in this
paper.
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5. Results and discussion

5.1. Flow and thermal fields

The mechanism of flow inside the enclosure can be well
understood if one considers a simplified forced flow and a
natural flow (buoyancy induced) separately. The discussion
is first restricted to the aiding flow situation. Consider the
case of a forced flow with uniform inlet velocity of V0.
Fig. 3a is helpful for understanding the following discus-
sions. The velocity boundary layer thickness is not encoun-
tered in the vicinity of the isothermal wall because of the
consideration of negligible pore Reynolds number in Darcy
model; that is, V 0

ffiffiffiffi
K
p

=m� 1 (see [37]). The wall friction
effect is not felt beyond a few pore lengths

ffiffiffiffi
K
p

in the y

direction. In other words, the hydrodynamic boundary
layer thickness is so small that one can neglect it and
consider the flow situation as inviscid. In such a case, the
v-velocity profile is a horizontal line (see Fig. 3a) and its
magnitude equals V0. One can perform a simple scale anal-
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Fig. 7. Streamlines (left) and isotherms (right) for Pe = 50, Ra =
ysis (see Bejan [37], and Mahmud and Fraser [30] for
details) on Eqs. (3) and (7) in order to obtain w � C1x

where C1 is an arbitrary constant. As the inlet temperature
(T0) of the fluid is different from the isothermal wall tem-
perature (Tw) a thermal boundary layer (dT) must exist.
The thickness of the thermal boundary layer can be calcu-
lated by considering another scale analysis on Eqs. (4) and
(8) which results in dT � yPe�1=2

y where Pey is the Péclet
number based on the length y. Now, consider the case of
the natural or buoyancy induced flow. The effect of buoy-
ancy is strong near the vertical isothermal wall. Due to the
negligible pore Reynolds number, the maximum v-velocity
occurs after a few pore lengths

ffiffiffiffi
K
p

from the wall. The
v-velocity (see Fig. 3a) will decrease to zero with increasing
horizontal distance similar to that seen in the classical
buoyancy induced boundary layer flow near a vertical wall
(see [37]). Performing again a scale analysis on Eqs. (4) and
(8), it is possible to show that for a natural flow
dT � yRa�1=2

y where Ray is the Rayleigh number based on
the length y. For simplicity, if one considers the mixed
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convection flow as a superposition of the forced flow and
the natural flow (see Fig. 3a), there exist non-zero vorticity
components inside the region occupied by the area D · H

just after the isothermal wall which is responsible for a hor-
izontal stream of jet. Streamlines are no-longer parallel to
the isothermal wall (see Fig. 4a) as is the case of a forced
flow. Note that the strength of the vorticity is proportional
to the temperature gradient oT/ox and, in the absence of
oT/ox, current problem reduces to a forced flow problem.
The particular streamline, originated at the right edge of
the inlet (w = �0.25, not shown in Fig. 4a) represents three
adiabatic walls. The streamline w = �0.24 makes a void
region with the three adiabatic walls where fluid is almost
motionless. An increasing forced flow or natural flow
change the flow pattern inside the enclosure. The simplified
model presented above may not be suitable to describe the
flow pattern in such a situation. A comparatively high
buoyancy force strengthens the near wall vorticity as well
as the horizontal stream which pushes the parameter
w = �0.24 further to the adiabatic walls (see Fig. 4b).
Due to the convective current, the secondary flow appears
-0.24

-0.24
-0.24

-0.22

-0
.2

2

-0.22

-0.21

-0.21

-0.19

-0
.1

9

-0.18

-0
.1

8

-0.16

-0
.1

6

-0
.1

5

-0.15
-0.13

- 0
. 1

2

-0. 12
- 0.10

-0
.0

9
-0

.0
9

-0 .07
-0 .0 6

-0
.0

6
-0

.0
4

-0
.0

3

-0 .03
-0.0

-0.01

(a)

-0.24

-0
.2

4

-0.24

-0.24

-0.22

-0
.2

2

-0.22

-0.21

-0.21

-0.21

-0.19

-0.19

0.19

-0
.18

-0.18

-0.16

-0. 16

-0.16
-0.15

-0.15

-0.
13

-0.13

-0
.1

2

-0.12

-0
.1

0

-0.10
-0.09

-0
.0

9
-0

.0
7

-0.07

-0
.0

6

-0.06

-0
.0

4

-0
.0

3

-0.01

-0
.0

1

(b)

Fig. 8. Streamlines (left) and isotherms (right) for Pe = 100, Ra =
just over the bottom wall. The egg-shaped primary circula-
tion bubble originates due to the strong vorticity in the
D · H region near the isothermal wall as discussed earlier
(as given by Fig. 3).

A strong forced flow can cause a flow separation from
the right edge of the inlet. Combinations of strong forced
flow and week natural flow can cause an almost horizontal
mixed flow profile thus weakening the strength of vorticity
in the D · H region. An example of such a case is depicted
in Fig. 4c. A major portion of the streamlines from inlet to
the exit vent appears to be straight (parallel to the isother-
mal wall) and nearly unperturbed by the buoyancy force.
There is no indication of circulating bubble. The reduction
of the strength of the forced flow of Fig. 4c introduces a cir-
culating bubble as shown in Fig. 4d due to the stronger
horizontal jet.

In contrast, the opposing flow situation can produce two
different types of mixed flow profiles as shown in Fig. 3b
depending on the relative magnitude of the forced flow
velocity and natural flow velocity. It should be noted that
the natural velocity is negative in the opposing flow case.
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For a strong enough forced velocity (see Fig. 4e), mixed
velocity profile is positive everywhere and nearly horizontal
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Fig. 9. Streamlines (left) and isotherms (right) for Pe = 10, Ra = 100 and D/H
D/H = 0.5: (c) aiding flow and (d) opposing flow.
that causes a weaker horizontal jet. However, for a strong
enough natural velocity, a part of mixed velocity is negative
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and another part is positive as shown in Fig. 3b. An exam-
ple case of such a situation is depicted in Fig. 4f. The down-
ward moving fluid near the isothermal wall and the upward
moving fluid from the inlet through the right portion of the
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Fig. 10. Local Nusselt number at (a) Pe = 10, D/H = 0.1; (b) Pe = 10,
D/H = 0.4; and (c) Pe = 10, D/H = 0.6.
enclosure to the exit vent create a large recirculation
bubble.

Streamlines and isotherms contours are plotted in
Figs. 5–10 for both aiding and opposing flow cases. The
results in Figs. 5 and 6 are for D/H = 0.25, Ra = 100 and
Pe = 0.1 and 10, which correspond to the case when the
heat transfer inside the cavity is dominated by conduction
mode. As Ra increases (Ra = 100, for example), the con-
vection heat transfer becomes the dominant heat transfer
mode. It is noticed a primary circulation zone with stream-
lines close to the left vertical wall for the opposing flow case
(Figs. 5b and 6b) and secondary circulation zones (Figs. 5a
and 6a). For increasing Pe number (Pe = 50) there is a
small circulation zone only for the case of opposing flow
as seen in Fig. 7. The transformation of the unicellular pat-
tern to multicellular pattern may be attributed to the
enhancement of buoyancy force brought in by increasing
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Fig. 11. Variation of the average Nusselt number with Ra for Pe = 10 and
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Ra. Secondary recirculation zones are known to hinder the
heat transfer process. The results for isotherms in Fig. 9a–d
show a stratified flow within the enclosure with steep gradi-
ents near the isothermal vertical wall. However, the tem-
perature gradient increases near the isothermal vertical
wall when both Pe and Ra are equal (Pe = Ra = 100) as
seen in Fig. 8.

5.2. Local and global heat transfer

As (Tw � T0) is selected as a reference temperature dif-
ference for the current problem the local heat transfer rate
from or to the isothermal wall entirely depends on the tem-
perature gradient at that wall (oT/oxjx=0) due to the fact
that both Tw and T0 are set constant. The lower left corner
of the enclosure where the inlet and the isothermal wall
intersect is always critical due to the singularity for the tem-
perature gradient. To avoid the appearance of such a sin-
gularity, we start calculating the temperature gradient at
a location of y slightly above y = 0. Fig. 10a–c show the
local Nusselt number (NuL) distribution at some selected
parameters mentioned in the plots. The region near the
lower left corner of the enclosure is identified to show a
thermal spot of high concentration of isotherms. Tempera-
ture gradient is higher in magnitude around this region. As
one proceeds towards the exit vent along the isothermal
wall, the isotherms are driven away from the isothermal
wall due to the horizontal jet thus lowering the temperature
gradient. For obvious reasons, NuL is high in magnitude at
Table 2
Values of the average Nusselt number at different D/H: aiding flow situation

Ra Average Nusselt number (Nuav)

D/H = 0.1 D/H = 0.2 D/H = 0.3

0.1 1.005 1.837 2.343
0.5 1.004 1.836 2.345
1 1.003 1.835 2.347
5 0.992 1.824 2.364
10 0.979 1.809 2.380
25 0.943 1.762 2.398
50 0.892 1.681 2.363
75 0.848 1.606 2.302
100 0.811 1.540 2.236
150 0.749 1.431 2.110
200 0.700 1.344 2.005
250 0.660 1.274 1.917
300 0.627 1.215 1.840
350 0.599 1.166 1.775
400 0.575 1.123 1.719
500 0.536 1.053 1.624
750 0.467 0.930 1.448
1000 0.423 0.851 1.334
1500 0.368 0.748 1.181
2000 0.333 0.684 1.083
2500 0.309 0.638 1.012
3000 0.291 0.603 0.957
3500 0.277 0.575 0.914
4000 0.265 0.553 0.877
4500 0.256 0.534 0.847
5000 0.248 0.517 0.819
the lower left region of the enclosure and it decreases with
increasing y as shown in Fig. 10a–c. Closer to the exit vent,
isotherms inside the D · H region are nearly parallel to the
isothermal wall due to the uniform horizontal jet. In this
region, NuL are more or less independent of the vertical dis-
tance. When D/H = 0.1, the horizontal jet in the narrow
D · H region is not strong enough to drive the isotherms
far away from the left wall even at the high Rayleigh num-
ber (Ra = 1000). Consequently, the variation between the
magnitudes of two consecutive NuL–y profiles are small;
more specifically, at lower Rayleigh numbers as shown in
Fig. 10a. When the line integration of NuL is performed
to obtain the average Nusselt number (Nuav) (see
Fig. 11a) the variation of Nuav with Ra is small when com-
pared to the variation of Nuav with Ra at high D/H. The
NuL–y profiles at other Ra and D/H shows the similar dis-
tribution pattern whose reason is already described earlier
but only change is observed in their relative magnitudes.
Consider a case of a high D/H (for example, D/H = 0.6)
keeping other parameters (Pe, Ra, etc.) constant. In such
a situation the larger inlet will allow more forced flow
which can cause the isotherms more concentrated to the
left wall around the bottom left portion of the enclosure.
For constant Péclet number and Rayleigh number, higher
D/H shows larger NuL in general and the average Nusselt
number increases with increasing D/H. There are also some
exceptions; for example, at D/H = 0.6, the horizontal jet is
strong enough at high Rayleigh number (Ra = 1000) to
drive the isotherms far away from the left wall. The near
for Pe = 10

D/H = 0.4 D/H = 0.5 D/H = 0.6

2.630 2.803 2.918
2.636 2.812 2.930
2.643 2.824 2.944
2.699 2.914 3.061
2.762 3.021 3.202
2.893 3.284 3.579
2.974 3.529 4.011
2.965 3.614 4.229
2.921 3.617 4.311
2.809 3.543 4.307
2.696 3.430 4.212
2.597 3.324 4.103
2.509 3.225 3.995
2.431 3.135 3.886
2.358 3.047 3.790
2.239 2.904 3.620
2.017 2.632 3.287
1.865 2.438 3.050
1.659 2.174 2.726
1.524 1.999 2.501
1.426 1.869 2.335
1.346 1.768 2.207
1.284 1.683 2.103
1.232 1.615 2.016
1.186 1.556 1.941
1.148 1.505 1.870
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wall isothermal lines in such a case become nearly horizon-
tal to the bottom wall which causes a very low temperature
gradient as well as low NuL relative to the NuL at low Ray-
leigh numbers. Average Nusselt number shows a decreas-
ing tendency after getting a peak (see Fig. 11a) in such a
situation.

Some values of the average Nusselt number, Nuav, for
different values of the parameters Pe, Ra and D/H are
given in Tables 2–5 for both aiding and opposing flow
Table 3
Values of the average Nusselt number at different D/H: opposing flow situatio

Ra Average Nusselt number (Nuav)

D/H = 0.1 D/H = 0.2 D/H = 0.3

�0.1 1.006 1.837 2.342
�0.5 1.007 1.838 2.340
�1 1.008 1.839 2.337
�5 1.019 1.849 2.315
�10 1.034 1.859 2.282
�25 1.080 1.878 2.170
�50 1.170 1.883 1.994
�75 1.266 1.884 1.869
�100 1.362 1.892 1.787
�150 1.545 1.922 1.681
�200 1.711 1.953 1.609
�250 1.859 1.976 1.550
�300 1.988 1.992 1.498
�350 2.093 2.002 1.450
�400 2.189 2.007 1.406
�500 2.345 1.997 1.326
�750 2.602 1.950 1.162
�1000 2.771 1.878 1.035
�1500 2.971 1.724 0.854
�2000 3.079 1.581 0.729
�2500 3.131 1.457 0.639
�3000 3.155 1.348 0.571

Table 4
Values of the average Nusselt number at different Péclet number: aiding flow

Ra Average Nusselt number (Nuav)

Pe = 0.1 Pe = 1 Pe = 5 Pe

1 1.134 1.223 1.632 2.
50 1.007 1.086 1.476 2.
100 0.923 0.995 1.355 1.
500 0.678 0.724 0.962 1.
1000 0.578 0.614 0.800 1.
5000 0.401 0.421 0.519 0.

Table 5
Values of the average Nusselt number at different Péclet number: opposing flo

Ra Average Nusselt number (Nuav)

Pe = 0.1 Pe = 1 Pe = 5 P

�1 1.142 1.230 1.639 2
�50 1.363 1.435 1.709 1
�100 1.493 1.533 1.699 1
�500 1.515 1.528 1.586 1
�1000 1.337 1.343 1.372 1
cases. In addition, the variation of Nuav with Ra is shown
in Fig. 11 for Pe = 10 and the ratio D/H in the range from
0.1 to 0.6. It is interesting to note from Tables 2 and 3 that
the global heat transfer into the enclosure is sensitive to the
change of the parameter D/H and the reason behind this is
already discussed in the previous paragraph. Thus, Nuav

increases with increasing this parameter for a fixed value
of Pe (=10). For aiding flow Nuav decreases monotonically
for D/H = 0.1 and 0.2, while it has a maximum value for
n for Pe = 10

D/H = 0.4 D/H = 0.5 D/H = 0.6

2.627 2.798 2.912
2.622 2.789 2.900
2.614 2.777 2.885
2.553 2.683 2.767
2.473 2.564 2.620
2.231 2.220 2.198
1.898 1.762 1.644
1.677 1.469 1.300
1.530 1.283 1.090
1.343 1.056 0.851
1.218 0.915 0.711
1.123 0.815 0.617
1.047 0.740 0.548
0.984 0.680 0.495
0.929 0.631 0.454
0.840 0.555 0.392
0.686 0.436 0.300
0.586 0.366 0.249
0.461 0.284 0.924
0.385 – –
– – –
– – –

situation for D/H = 0.25

= 10 Pe = 20 Pe = 50 Pe = 100

126 2.923 4.415 6.055
033 3.205 5.483 7.146
891 3.156 6.358 8.205
332 2.313 6.781 13.423
085 1.851 5.706 14.224
664 1.037 2.952 9.186

w situation D/H = 0.25

e = 10 Pe = 20 Pe = 50 Pe = 100

.124 2.902 4.372 6.010

.981 2.414 3.432 4.943

.875 2.171 2.857 4.019

.652 1.763 1.982 2.234

.404 1.458 1.552 1.638
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Fig. 12. Variation of average Nusselt number with Ra at (a) Pe = 10 and
D/H = 0.6 and (b) Pe = 10 and D/H = 0.1 during gradual run and
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0.3 6 D/H 6 0.6 and the considered value of Pe (=10). It is
seen that the maximum value of Nuav takes place for rela-
tively low values of Ra between 10 and 150. On the other
hand, for the opposing flow case, Nuav increases monoton-
ically with Ra for small values of D/H (=0.1, say) and
decreases monotonically with Ra for 0.3 6 D/H 6 0.6 but
for D/H = 0.2 it has a maximum value for Ra in the range
350 6 Ra 6 500. Further, Tables 4 and 5 show that Nuav

increases monotonically with increasing Pe, i.e., the forced
convection flow for a fixed value of D/H (=0.25). In addi-
tion to this discussion it is also very important to notice
from Tables 2–5 and Fig. 11 that for aiding flow case, solu-
tions of Eqs. (7) and (8) can be obtained for all values of
the parameters Pe, Ra and D/H considered. However, for
opposing flow case, the solution diverges for all values of
these parameters considered. Thus, for large negative val-
ues of Ra a combination of positive and negative mixed
vertical velocity close to the left wall may cause a local cir-
culation, instability, multiplicity, and even turbulent flow
and the intensive study of such situations is beyond the
scope of the present paper. Nevertheless, for some selected
parameters, the following section performs a bifurcation
analysis based on the concept of the gradual run and the
impulsive run (see [38]). This is similar to the problem of
mixed convection boundary layer flow over a vertical flat
plate embedded in a porous medium where the boundary
layer separation occurs for some values of the mixed con-
vection parameter Ra/Pe. It is worth mentioning that the
boundary layer separation in porous media has been first
put in evidence by Merkin [39].

5.3. Bifurcation analysis

In this section, for some selected parameters (D/H = 0.6
and Pe = 10), we perform a special type of bifurcation
analysis proposed by Wakitani [38] in order to check the
existence of multiple solutions depending on the different
initial conditions. To find out the dependency of the flow
structure as well as the heat transfer rate on the initial con-
dition, the numerical calculation is carried out either by an
impulsive run or a gradual run. The numerical simulation
in impulsive run starts by assuming a motionless isother-
mal initial state for each Rayleigh number. In contrast,
the numerical simulation in gradual run is carried out by
gradually increasing Rayleigh number where the initial
condition during a simulation at a particular Rayleigh
number is selected from previously solved converged solu-
tion at a lower Rayleigh number. For a comprehensive
reference on such a bifurcation analysis, see articles by
Wakitani [38,40]. The numerical solution so far presented
in this paper is based on a gradual run. We re-simulate
the special case of D/H = 0.6 and Pe = 10 for both aiding
flow and opposing flow situations by using an impulsive
run as stated earlier. The corresponding average Nusselt
number as a function of Rayleigh number is presented in
Fig. 12a. The previously obtained average Nusselt number
(see Tables 2–4 and Fig. 11) from gradual run is also
presented in Fig. 12a for a comparison purpose. As stated
earlier, Nuav shows a little or no variation with increasing
Ra in the conduction dominated regime. The difference
between the magnitudes of Nuav at gradual run and impul-
sive run is very small (particularly in the conduction
regime) and this is identified as single-branch (SB) solution
as shown in Fig. 12a. The single-branch solution extends
beyond the conduction regime to a point (Ra � 50 for aid-
ing flow and Ra � 25 for opposing flow at Pe = 10 and
D/H = 0.6) from where the multiple-branch (MB) solution
is easily identifiable. In the MB region, Nuav obtained by
the impulsive run is lower in magnitude when compared
with Nuav obtained by the gradual run. The transition
between the single-branch to multiple-branch solution (or
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multiple-branch to single-branch) is strictly governed by
the existence of the convective motion and convective pat-
tern change inside the enclosure (more specifically, in the
D · H region) which is affected by change in the initial con-
dition. In conduction regime, convective motion is negligi-
ble and a change in the initial condition shows a negligible
effect in convective pattern change. Consequently, the aver-
age heat transfer rate is unaffected or little affected by the
change in initial condition which results a single-branch
solution. When convective motion starts at high Rayleigh
number and becomes stronger, the gradual run solution
slightly overpredicts the solution obtained by the impulsive
run. If one is able to select an infinitely small gap between
two consecutive Rayleigh numbers (which requires very
large computational time) during gradual run the multi-
ple-branch solution may theoretically become a single-
branch solution. The step change from one steady-state
solution at a low Ra to another steady-state solution at a
high Ra creates an intermediate non-equilibrium situation
that slightly changes the convective pattern (circulation
bubble, strength of horizontal jet, etc.) in the enclosure.
This change causes the multiple-branch solution as shown
in Fig. 12a. The solution after the conduction regime and
before the starting point of multiple-branch shows a single
branch which requires an extensive investigation and leave
for a future work. However, we could not identify any mul-
tiple-branch solution at low D/H; for example, D/H = 0.1
and Pe = 10 as shown in Fig. 12b.

6. Conclusions

Two-dimensional, steady mixed convection flow in a
porous square vented cavity with an isothermal vertical
surface and the other three walls being adiabatic has been
studied numerically. The transformed equations of Darcy
and energy in non-dimensional form have been solved
numerically using the finite-volume method. Governing
parameters chosen are Pe, Ra, and D/H which are varied
in the ranges 0.1 6 Pe 6 100, 0.1 6 jRaj 6 1000 and
0.1 6 D/H 6 0.6. Both aiding and opposing buoyancies
were considered. The obtained results showed that the
parameter D/H considerably affects the flow and heat
transfer characteristics in the cavity. Also, the variation
of the parameters Pe, Ra, and D/H transform the flow pat-
tern from a unicellular flow to a multicellular flow, espe-
cially, for small values of the forced flow (small values of
Pe). It is shown that the global heat transfer into the enclo-
sure is sensitive to the change of the parameter D/H for
fixed values of the parameters Ra/Pe and Pe, respectively.
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